Abstract: Cp*Mo(NO)(CH₂CMe₃)₂ (1), a complex with α-agostic C–H•••Mo interactions, evolves neopentane in neat hydrocarbon solutions at room temperature and forms the transient 16-electron alkylidene complex, Cp*Mo(NO)(C₆H₅)₂ (2), which subsequently activates solvent C–H bonds. Thus, it reacts with tetramethylsilane or mesitylene to form Cp*Mo(NO)(CH₂CMe₃)(CH₂SiMe₃) (3) or Cp*Mo(NO)(CH₂CMe₃)(η²-C₂H₄-C₂H₅-3,5-Me₂) (4), respectively, in nearly quantitative yields. Under identical conditions, 1 in p-xylene generates a mixture of sp² and sp³ C–H bond activation products, namely Cp*Mo(NO)(CH₂CMe₃)(C₆H₅-2,5-Me₂) (4, 73%) and Cp*Mo(NO)(CH₂CMe₃)(η²-C₂H₄-C₂H₅-4-Me) (5, 27%). In benzene at room temperature, 1 transforms to a mixture of Cp*Mo(NO)(CH₂CMe₃)(C₆H₆) (6) and Cp*Mo(NO)(C₆H₆) (7) in a sequential manner. Most interestingly, the thermal activation of 6 at ambient temperatures gives rise to two parallel modes of reactivity involving either the elimination of benzene and formation of Cp*Mo(NO)(C₆H₅) or the elimination of neopentane and formation of the benzyne complex, Cp*Mo(NO)(η²-C₆H₄). In pyridine, these intermediates are trapped as the isolable 18-electron adducts, Cp*Mo(NO)(η²-C₆H₄)(NC₅H₅) (8) and Cp*Mo(NO)(η²-C₄H₄)(NC₅H₅) (9), and, in hydrocarbon solvents, they effect the intermolecular activation of aliphatic C–H bonds at room temperature to generate mixtures of neopentyl- and phenyl-containing derivatives. However, the distribution of products resulting from the hydrocarbon activations is dependent on the nature of the solvent, probably due to solvation effects and the presence of α- or π-hydrocarbon complexes on the reaction coordinates of the alkylide and the benzyne intermediates. The results of DFT calculations on these processes in the gas phase support the existence of such hydrocarbon complexes and indicate that better agreement with experimental observations is obtained when the actual neopentyl ligand rather than the simpler methyl ligand is used in the model complexes.

Introduction

Considerable effort is currently being devoted to the study of selective, intermolecular C–H bond-activation processes with a view to developing efficient and catalytic methods for the direct conversion of hydrocarbon feedstocks into functionalized organic compounds.¹ To date, advances in this field have included the discoveries of various types of metal-containing complexes that effect selective C–H bond activations. Notable examples are late-transition-metal complexes that oxidatively add C–H bonds to the metal center, transition-metal, lanthanide, and actinide complexes that facilitate C–H activation via M–C α-bond metathesis and early- to mid-transition-metal complexes that add substrate C–H bonds across M=NR or M=CHR linkages.¹

¹ University of British Columbia.
² University of Southern California.
³ Current address: Department of Energy & Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

Our contribution to this area of chemistry derives from our abiding interest in the family of Cp'M(NO)R₂ complexes (Cp' = Cp (η²-C₂H₄) or Cp* (η²-C₅H₅)); M = Mo or W; R = alkyl or aryl) due to their unique thermal behavior in hydrocarbon solutions. Previous reports from our laboratories have described the thermal conversion of Cp*W(NO)(hydrocarbyl) complexes into transient tungsten alkylidene,² acetylene,³ or allene⁴ species that subsequently activate the C–H bonds of hydrocarbon solvents, often in an unprecedented manner. The reactive

tungsten species are typically formed by thermolysis of appropriate organometallic precursors at temperatures ranging from 50 to 80 °C. However, under these conditions some of the C—H activation processes lead to cascade-type or decomposition processes, and the operative chemistry is often obscured by the thermal instability of the organometallic complexes involved. Consequently, we decided to extend our studies to encompass the congeneric molybdenum precursors in hopes of overcoming the thermal instability of the organometallic complexes involved. We also describe the results of DFT calculations on some of these processes in the gas phase that provide additional insight as to the mechanistic pathways being followed during these metal-mediated transformations. A portion of this work has been communicated previously.7

Results and Discussion

Solid-State and Solution Molecular Structures of Cp*Mo(NO)(CH2CMe3)2 (1). As might have been expected, the molecular structures of 1 in both the solid state and solutions are virtually identical to those of its tungsten congener.8 Both

\[\text{Cp}^*\text{Mo(NO)(CH}_2\text{CMe}_3) \] 2 (1).

In this report, we present the results of our investigations of the thermal chemistry of 1 in various solvents, a survey that has revealed both similarities and differences with that established for its well-studied tungsten analogue. We also describe the results of DFT calculations on some of these processes in the gas phase that provide additional insight as to the mechanistic pathways being followed during these metal-mediated transformations. A portion of this work has been communicated previously.7

Table 1. X-ray Crystallographic Data for Complexes 1, 3, 6, 8, and 9-C6H6

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>8</th>
<th>9-C6H6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C2H2Cl2MoNO</td>
<td>C2H2Cl2MoNO</td>
<td>C2H2Cl2MoNO</td>
<td>C2H2Cl2MoNO</td>
<td>C2H2Cl2MoNO</td>
</tr>
<tr>
<td></td>
<td>404.45</td>
<td>451.49</td>
<td>409.41</td>
<td>410.40</td>
<td>494.47</td>
</tr>
<tr>
<td></td>
<td>0.37 x 0.24 x 0.015</td>
<td>0.20 x 0.20 x 0.20</td>
<td>0.30 x 0.20 x 0.20</td>
<td>0.57 x 0.22 x 0.18</td>
<td>0.20 x 0.05 x 0.05</td>
</tr>
<tr>
<td></td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>triclinic</td>
<td>orthorhombic</td>
</tr>
<tr>
<td></td>
<td>P2̅/n</td>
<td>P2̅/n</td>
<td>P2̅/c</td>
<td>P̅1</td>
<td>P2̅(2̅)</td>
</tr>
<tr>
<td></td>
<td>2097.4(7)</td>
<td>2305.4(3)</td>
<td>2061.86(17)</td>
<td>1015.4(9)</td>
<td>2300.8(2)</td>
</tr>
<tr>
<td></td>
<td>8.9121(17)</td>
<td>13.1900(11)</td>
<td>10.2911(5)</td>
<td>8.3724(7)</td>
<td>7.8177(4)</td>
</tr>
<tr>
<td></td>
<td>21.7042(7)</td>
<td>14.8175(7)</td>
<td>14.6191(6)</td>
<td>8.944(5)</td>
<td>14.3141(9)</td>
</tr>
<tr>
<td></td>
<td>11.260(2)</td>
<td>15.1108(13)</td>
<td>14.4274(8)</td>
<td>14.795(8)</td>
<td>20.5603(10)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>105.610(3)</td>
<td>101.828(4)</td>
<td>108.369(2)</td>
<td>81.399(9)</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.278</td>
<td>1.301</td>
<td>1.319</td>
<td>1.342</td>
<td>1.428</td>
</tr>
<tr>
<td></td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71069</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td></td>
<td>130(2)</td>
<td>173(2)</td>
<td>173(2)</td>
<td>160(2)</td>
<td>173(2)</td>
</tr>
<tr>
<td></td>
<td>6.30</td>
<td>5.81</td>
<td>6.43</td>
<td>6.54</td>
<td>5.91</td>
</tr>
<tr>
<td></td>
<td>856</td>
<td>952</td>
<td>856</td>
<td>428</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>0.0444</td>
<td>0.0413</td>
<td>0.0285</td>
<td>0.0473</td>
<td>0.0327</td>
</tr>
<tr>
<td></td>
<td>0.1038</td>
<td>0.1018</td>
<td>0.0780</td>
<td>0.1230</td>
<td>0.0662</td>
</tr>
</tbody>
</table>

Figure 1. ORTEP plot of the solid-state molecular structure of Cp*Mo(NO)(CH2CMe3)2 (1) with 50% probability ellipsoids. Selected bond lengths (Å) and angles (deg): Mo(1)—N(1) = 1.757(3), N(1)—O(1) = 1.216(4), Mo(1)—C(11) = 2.163(3), Mo(1)—C(16) = 2.098(4), Mo(1)—H(4) = 2.18(6), Mo(1)—N(1)—O(1) = 165.8(3), N(1)—Mo(1)—C(11) = 98.73(13), N(1)—Mo(1)—C(16) = 98.55(13), and C(11)—Mo(1)—C(16) = 108.77–108.87(15).

Cp*M(NO)(CH2CMe3)2 (M = Mo, W) molecular complexes are isomorphous and crystallize in the P2̅/n space group with essentially the same unit-cell dimensions (Table 1). A single-crystal X-ray diffraction analysis of 1 at 130(2) K has confirmed its monomeric nature and has provided the ORTEP diagram and intramolecular metrical parameters presented in Figure 1. The Cp*—Mo and Mo—NO intramolecular dimensions are similar to those found in related complexes.9 There is some rotational disorder in the methyl groups of one neopentyl ligand; however, this disorder has no effect on the positions of the atoms of its methylene group. One of the methylene C—H bonds, C(16)—H(4), is strongly distorted toward the Mo atom in an orientation consistent with interaction between this C—H bond and the vacant metal-based d orbital. The Mo(1)—C(16)—H(4) angle associated with this bond (81(3)°) is much lower than the normal value (109.5°) expected for an sp3-hybridized C atom, and the Mo(1)···H(4) distance of 2.18(6) Å is in the range
anticipated for an agostic interaction. In addition to this agostic C–H⋯Mo interaction, another methylene hydrogen, H(2), appears to be interacting very weakly with the Mo atom, but this interaction is much more subtle [C(11)–H(2) = 0.97(4) Å; Mo(1)–C(11)–H(2) = 99(2)°]. Nevertheless, the structural deformations ascribed to agostic interactions in 1 are very similar to those revealed in its tungsten congener by a low-temperature X-ray analysis. This “unequal double α-agostic” motif has been more definitively established for the tungsten complex by a neutron diffraction analysis at 120 K.8

The 1H and gated-decoupled 13C NMR spectra of 1 in toluene-d8 at 0 °C indicate that the α-agostic interactions evident in the solid-state structure persist in solutions. First, there is a large chemical-shift difference (Δδ = 4.02) between the methylene proton signals that appear as doublets in the 1H NMR spectrum with one doublet appearing at δ = −1.06 ppm. Second, there are unequal 1JCH values (Δ1JCH = 24 Hz) evident for the α-carbon signals in the gated-decoupled 13C NMR spectrum with one being significantly reduced (i.e., 1JCH = 101 Hz) when compared to normal values. Indeed, both NMR spectra of 1 closely resemble those exhibited by Cp*W(NO)(CH2CMe3)2 (e.g., for the W compound, Δ1JCH = 23 Hz).8 In summary, there is essentially no difference between the molecular structures of the Mo and W complexes (vide infra).

C–H Bond-Activation Chemistry Initiated by Cp*Mo(NO)(CH2CMe3)2 (1). A. Activation of Tetramethylsilane. Stirred solutions of 1 in tetramethylsilane at room temperature evolve neopentane over 28 h as the known11 mixed alkyl complex, Cp*Mo(NO)(CH2CMe3)(CH2SiMe3) (2), is formed in quantitative yield (eq 2). Complex 2 is formed from 1 via the activation of an sp3 C–H bond of a solvent molecule, and it does not react further with tetramethylsilane under these mild reaction conditions. In contrast, the analogous tungsten complex reacts with tetramethylsilane under the requisite thermolysis conditions (70 °C, 40 h) to generate a mixture of Cp*W(NO)(CH2CMe3)2(CH2SiMe3) (97%) and Cp*W(NO)(CH2SiMe3)2 (3%).2 The second product presumably results from the elimination of neopentane from Cp*W(NO)(CH2CMe3)(CH2SiMe3) and formation of transient Cp*W(NO)(CHSiMe3) that subsequently activates a second solvent molecule.

B. Activation of Mesitylene. The thermal reaction of 1 in neat mesitylene affords Cp*Mo(NO)(CH2CMe3)(η5-C6H3(2,4,6-Me3)) (3) in ca. 95% yield after 28 h at room temperature (eq 3). No signals attributable to any other C–H bond-activation products are evident in the 1H NMR spectrum of the final reaction mixture. Complex 3 exhibits 1H and 13C[1H] NMR spectra that indicate that the bulky 3,5-dimethylbenzyl ligand is attached to the metal in an η5 fashion on average in solution.11 The existence of this coordination mode is indicated by a broad 1H NMR resonance at δ 5.94 that can be attributed to the ortho H atoms of this ligand and the occurrence of a high-field ipso carbon resonance at δ 118.4 in the 13C{1H} spectrum. Our inference of this mode of attachment is further supported by the solid-state molecular structure of 3 (Figure 2) that clearly shows an η5-3,5-dimethylbenzyl ligand having a bonding contact between the ipso carbon and the metal center (Mo(1)–C(12) = 2.496(3) Å) and an acute Mo–C–Cipso bond angle of 84.0° (2)°. The other metrical parameters associated with the η5-3,5-dimethylbenzyl ligand of 3 are similar to those extant in Cp*Mo(NO)(CH2SiMe3)(η5-C6H3(2,4-Me) and related benzyl complexes.12 The propensity of benzyl ligands to exhibit η5 coordination modes in such complexes has been attributed to their ability to provide in this manner the necessary extra electron density to impart an 18e configuration to the metal center.

C. Activation of p-Xylene. The reaction of 1 in p-xylene at room temperature generates products derived from the activation of solvent sp2 and sp3 C–H bonds. Specifically, the aryl complex Cp*Mo(NO)(CH2CMe3)(C6H3-2,5-Me2) (4, 73%) and the known12b 4-methylbenzyl complex Cp*Mo(NO)(CH2CMe3)(η5-CH2C6H4-4-Me) (5, 27%) are formed (eq 4). Although isomeric complexes 4 and 5 have not been isolated in pure form from the final reaction mixture, they have been identified on the basis of NMR spectroscopic, mass spectral, and elemental analysis data. The NMR spectral features of 4 are consistent with the formation of a single isomer with the structure shown in eq 4, unlike the related tungsten complex Cp*W(NO)(CH2-CMe3)(C6H3-2,5-Me2), which exists as two rapidly interchanging isomers in solution at room temperature.13 The solution 1H NMR spectrum of 5, like that of the related complex 3, reveals the presence of an η5-4-methylbenzyl ligand and exhibits four sets of resonances due to the diastereotopic methylene H atoms.

D. Activation of Benzene-d6 and Mechanistic Considerations. Complex 1 in C6D6 is converted to Cp*Mo(NO)(CH2DMe3)(C6D3) (6-d6) over the course of 28 h at room temperature (eq 5). The 1,2-C–D bond addition of C6D6 across

Kinetic studies of α-hydrogen elimination from 1 have been carried out in C₆D₆ solution by monitoring the decay of the Cp* resonance of 1 using ¹H NMR spectroscopy in the temperature range 26–40 °C. The onset of neopentane elimination from 1 is indicated by a growth in the resonances due to 6-d₆ and neopentane (δ 0.90). The activation parameters ΔH° = 99(1) kJ mol⁻¹ and ΔS° = −11(4) J mol⁻¹ K⁻¹ for this transformation can be determined using regression methods from a linear plot of ln(k/T) versus 1/T, and they are consistent with the rate-determining step being the elimination of neopentane from 1. In addition, the thermolysis of 1 in a 1:1 mixture of benzene/benzene-d₆ at 23 °C yields an intermolecular KIE of 1.04(4), a value similar to that exhibited by its tungsten congener at 70 °C. In other words, all current indications are that the Cp*M(NO)(CH₂CMe₃)₂ (M = Mo, W) complexes follow very similar mechanistic pathways during their thermal activations of hydrocarbon C–H bonds.

E. Activation of Benzene. Remarkably, the reaction of 1 with C₆H₆ at room temperature results in the sequential activation of two molecules of benzene and the formation of the two complexes Cp*M(No)(CH₂CMe₃)(C₆H₅) (6) and Cp*M(No)–(C₆H₅)₂ (7) in the final reaction mixture (Scheme 1). As shown in Scheme 1, the reaction of 6 with C₆H₆ at room temperature also cleanly generates 7. The yield of 6 can therefore be maximized by workup of the crude reaction mixture upon complete consumption of 1, that is, after ca. 28 h at room temperature. Complex 6 can be purified by extraction from the crude residue into cold pentane followed by column chromatography on alumina, and it is isolable as a red crystalline solid (27% yield).

Figure 2. ORTEP plot of the solid-state molecular structure of Cp*M(No)(CH₂CMe₃)(C₆H₅) (3) with 50% probability ellipsoids. Selected bond lengths (Å) and angles (deg): Mo(1)–N(1) = 1.76(1), N(1)–O(1) = 1.226(3), Mo(1)–C(11) = 2.189(3), Mo(1)–C(12) = 2.496(3), Mo(1)–C(20) = 2.226(3), C(11)–C(12) = 1.450(4), Mo(1)–N(1)–O(1) = 1.68(1), Mo(1)–C(11)–C(12) = 84.0(8), and C(11)–Mo(1)–C(12) = 35.28(11).

Figure 3. ORTEP plot of the solid-state molecular structure of Cp*M(No)(CH₂CMe₃)(C₆H₅) (6) with 50% probability ellipsoids. Selected bond lengths (Å) and angles (deg): Mo(1)–N(1) = 1.769(2), N(1)–O(1) = 1.214(2), Mo(1)–C(11) = 2.148(2), Mo(1)–C(17) = 2.097(2), Mo(1)–H(17a) = 2.13(3), Mo(1)–H(17b) = 2.57(3), C(17)–C(18) = 1.530(3), Mo(1)–N(1)–O(1) = 167.5(2), Mo(1)–C(17)–H(17a) = 78(2), Mo(1)–C(17)–H(17b) = 110(2), N(1)–Mo(1)–C(11) = 94.13(8), N(1)–Mo(1)–C(17) = 99.4(1), and C(11)–Mo(1)–C(17) = 113.98(8).

The solid-state molecular structure of 6 has been established by a single-crystal X-ray crystallographic analysis. The resulting ORTEP diagram of the three-legged piano-stool structure is shown in Figure 3, and pertinent crystal and refinement data are collected in Table 1. The most notable feature of the structure is the presence of one very strong methylene C–H...Mo agostic interaction (Mo(1)–H(17a) = 2.13(3) Å, Mo(1)–C(17)–H(17a) = 78(2)°) that persists in solutions of the complex. The other intramolecular metrical parameters of this molecule resemble those reported for related complexes. In general, aryl Cp* complexes of this type, that is, Cp*M(No)(aryl)(R) (Cp’ = Cp, Cp*; M = Mo, W; R = alkyl, aryl), are known to be thermally sensitive. 2b,14–16

The pentane-insoluble residue formed from solutions of 1 in benzene consists primarily of the diphenyl complex 7, which can be isolated in moderate yield (30%) as violet needles by recrystallization from ether. Alternatively, 7 can be prepared in higher yields simply by stirring benzene solutions of 1 (or 6) at room temperature for extended periods of time. Thus, it is formed virtually quantitatively in a benzene solution of 1 after ca. 1 week at ambient temperatures. Complex 7 in C6D6 solutions is converted to 7-d6 in room temperature, and 7-d10 is the only identifiable organometallic complex detected by 1H NMR spectroscopy after 48 h at 40 °C, although higher reaction temperatures also result in the formation of several unidentified decomposition products. The intermediacy of a transient benzene complex in this chemistry is indicated by the fact that monitoring of the conversion of 6-d6 to 7-d10 in C6D6 by 2H{1H} NMR spectroscopy shows no incorporation of deuterium into the Cp* methyl substituents. Hence, mechanisms involving the intramolecular oxidative addition of a Cp* C–H bond to a metal center and formation of intermediate “tuck-in” complexes that are known to result in such deuterium scrambling17–21 can be ruled out for this chemistry. Another possible mechanism for the C–H bond activation of benzene by 6 involves intermolecular oxidative addition to form a high-valent species such as Cp*Mo(NO)(H)(C6H5)(CH2CMe3). However, since there is no intermolecular kinetic isotope effect evident during the initial rates of the reaction of 6 with benzene/benzene-d6, this pathway is deemed to be unlikely.

The sequential activation of two molecules of benzene by 1 differs from the otherwise similarly chemisorbed previously for the related tungsten complex Cp*W(NO)(CH2CMe3)2, which is converted cleanly to the phenyl complex, Cp*W(NO)(C2H5)(C6H5)2 upon thermolysis in benzene at 70 °C. Cp*W(NO)(CH2CMe3)2 is not present in the final reaction mixture. In this connection, it may be noted that Cp*W(NO)(CH2CMe3)2(C6H5) converts at 110 °C in benzene solutions containing PMe3 to Cp*W(NO)(C6H5)(PMe3), presumably via a transient benzene complex.16 Another difference between the molybdenum and tungsten systems is that Cp*W(NO)(CH2CMe3)2 may be synthesized by treating Cp*W(NO)Cl2 with 1 equiv of (C6H5)2Mg•dioxane, but analytically pure samples of Cp*Mo(NO)(C6H5)2 (7) are only accessible via the C–H activation of benzene. Previous attempts to prepare 7 by metathetical means provided samples contaminated with MgCl2, possibly due to the formation of adducts in which the Lewis-basic nitrosyl ligand of 7 acts as a donor to the Lewis-acidic Mg atom of the magnesium chloride byproduct.22

To put these observations in context, it may be noted that Girolami and co-workers have shown that thermolysis of the titanium tetrakis(neopentyl) complex, Ti(CH2CMe3)4, in benzene results in the formation of Ti(CH2CMe3)3(C6H5).3c Deuterium-labeling studies in C6D6 indicate that this reaction proceeds via distinct alkylidene and titanacyclobutane intermediates formed via α- or ω-hydrogen elimination of neopentane from Ti(CH2-...
alkylidene NMR resonances at δ 12.43 and 298.4 for the \(R \)-proton and the \(R \)-carbon of the neopentylidene ligand, respectively. \(^{28}\) Interestingly, \(\text{Cp}^*\text{Mo(NO)}(\text{CH}_2\text{CMe}_3)\text{(CH}_2\text{-SiMe}_3)\text{(2)} \) reacts in neat pyridine-\(d_5 \) solution in a similar manner to form primarily \(8-d_5 \) with concomitant elimination of tetramethylsilane. A small amount of neopentane is also evolved during this conversion, but no organometallic coproducts have yet been definitively identified.

The room-temperature thermolysis of \(6 \) in neat PMe\(_3\) for 24 h results in the formation of a brown solution containing \(\text{Cp}^*\text{Mo(NO)}(\text{dCHCMe}_3)\text{(PMe}_3\text{)} \) that can be identified by its characteristic \(^1\text{H} \) NMR spectrum. Interestingly, a similar thermolysis of \(6 \) in pyridine affords an orange mixture of the alkylidene complex \(8 \) and the benzyne complex \(\text{Cp}^*\text{Mo(NO)}(\Ł\text{2-C}_6\text{H}_4)\text{(NC}_5\text{H}_5\text{)} \) (eq 7). Monitoring of this reaction by \(^1\text{H} \) NMR spectroscopy in pyridine-\(d_5 \) reveals that \(8-d_5 \) is formed preferentially (in an approximate 3:1 ratio), and signals due to liberated neopentane and benzene are also detectable in the \(^1\text{H} \) NMR spectrum of the crude reaction mixture (Figure 5). The aromatic region of the \(^1\text{H} \) NMR spectrum of \(9-d_5 \) exhibits inequivalent benzyne signals with overlapping multiplets at δ 7.48 (2H), 7.78 (1H), and 7.89 (1H). The \(^{13}\text{C}\{^1\text{H}\} \) NMR spectrum shows two low-field signals at δ 158.4 and 162.2 which correspond to the ipso carbon atoms of the benzyne ligand as well as four other benzyne carbon signals. The line shapes of these signals are invariant from 20 to 85 °C, thereby indicating that the Mo-\(\eta^2\)-C\(_6\)H\(_4\) linkage is static. Also, pyridine ligand exchange apparently does not occur, since the NMR spectra of \(9 \) in pyridine-\(d_5 \) at 85 °C are invariant with time.

\(^{1}\text{H} \) NMR spectroscopy in pyridine-\(d_5 \) reveals that \(8-d_5 \) is formed preferentially (in an approximate 3:1 ratio), and signals due to liberated neopentane and benzene are also detectable in the \(^1\text{H} \) NMR spectrum of the crude reaction mixture (Figure 5). The aromatic region of the \(^1\text{H} \) NMR spectrum of \(9-d_5 \) exhibits inequivalent benzyne signals with overlapping multiplets at δ 7.48 (2H), 7.78 (1H), and 7.89 (1H). The \(^{13}\text{C}\{^1\text{H}\} \) NMR spectrum shows two low-field signals at δ 158.4 and 162.2 which correspond to the ipso carbon atoms of the benzyne ligand as well as four other benzyne carbon signals. The line shapes of these signals are invariant from 20 to 85 °C, thereby indicating that the Mo-\(\eta^2\)-C\(_6\)H\(_4\) linkage is static. Also, pyridine ligand exchange apparently does not occur, since the NMR spectra of \(9 \) in pyridine-\(d_5 \) at 85 °C are invariant with time.

The benzyne complex \(9 \) can be readily isolated from the final reaction mixture by fractional crystallization from ether, and it is obtained as a canary yellow powder in 17% yield based on \(6 \) (i.e., a theoretical maximum yield of 25%). Recrystallization of \(9 \) from benzene provides yellow needles suitable for analysis by single-crystal X-ray diffraction, and the resulting ORTEP diagram of the solid-state molecular structure of \(9 \) is shown in Figure 6. As anticipated, the dihedral angle between the planar benzyne ligand and the \(\text{Mo(1)-C(11)-C(12)} \) plane is only 1.2° (2)\(^o\). The length of the benzyne C-C bond coordinated to the molybdenum center is 1.356(6) Å, while the other C-C bond distances in this ligand range from 1.374(6) to 1.394(6) Å with an average value of 1.383 Å. The two Mo-C(benzene) distances of 2.124(4) and 2.153(4) Å are unequal and larger than those (2.011 and 2.056 Å) extant in the only previously reported molybdenum aryne complex, namely \(\text{Mo(\Ł2-2-MeC}_6\text{H}_3)\text{(2-MeC}_6\text{H}_4\text{)}\text{(PMe}_2\text{Ph)}_2 \).\(^{29}\) The infrared spectrum of \(9 \) in KBr

\(^{28}\) Nugent, W. A.; Mayer, J. M. Metal–Ligand Multiple Bonds; Wiley: New York, 1988; Chapter 4.

C–H Activation by Neopentylidene and Benzylene Complexes

The distribution of products resulting from the reactions of hydrocarbons with 6 thus appears to be dependent on the nature of the hydrocarbon substrate, possibly due to the presence of σ- or π-hydrocarbon complexes on the reaction coordinates of the alkylidene and benzylene intermediates. [This possibility is specifically addressed during the theoretical investigations summarized in the next section.] Although the insertion of unsaturated small molecules into a metal–carbon bond of a benzene complex is a well-established phenomenon, only a relatively few benzene complexes (either isolated or invoked) have been reported to undergo intermolecular C-H bond activation processes and then usually at temperatures in excess of 100 °C.30-32 In addition, Jones has implicated various C-H bond-activation chemistry initiated by CpMo(NO)−alkyl Complexes. A. Optimal Structures of CpMo(NO)−(C5H5)(alkyl) Complexes. The molecular structure of CpMo(NO)(C5H5)(CH3) optimized by DFT calculations with LanL2DZ (G), SDD (G'), LanL2DZ-II (G''), or LanL2DZ-III (G''') basis sets and that of CpMo(NO)(C5H5)(CH2CMe3) optimized by using the LanL2DZ basis set (GG) are shown in Figure 7. Intramolecular geometrical parameters of these structures are summarized in Table 2. The C–Mo−Mo−NO and Mo−C6H5 intramolecular dimensions of structure G are generally comparable to those extant in the solid-state molecular structure of Cp*Mo(NO)(C6H5)(CH3) shown in Figure 3. One of the methyl C−H bonds in G, namely C1−H*, is distorted toward the Mo atom in an orientation consistent with there being an interaction between this C−H bond and the vacant metal-based d orbitals. Thus, the Mo−C1−H* angle (101.1°) is smaller than the normal value (109.5°) expected for an sp3-hybridized C atom, and the Mo−H* distance (2.594 Å) is distinctly shorter than the others. Nevertheless, the extent of this calculated α-agostic interaction is significantly lower than that evident in the X-ray structure of 6, in which the Mo−C1−H* angle and the Mo−H* distance are 78(2)° and 2.13(3) Å, respectively. The use of larger basis sets such as LanL2DZ-II or LanL2DZ-III instead of the normal LanL2DZ basis set slightly alters the extent of the α-agostic interaction slightly. Thus, the Mo−C1−H* angles extent in structures G, G', G'', and G''' (100.2°) are still more acute than that in G, while, in the G'

Table 2. DFT Optimized Structural Parameters for CpMo(NO)(C5H5)(CH3) (G−G') and CpMo(NO)(C5H5)(CH2CMe3) (GG) (see Figure 7)

<table>
<thead>
<tr>
<th>parameter</th>
<th>G</th>
<th>G'</th>
<th>G''</th>
<th>G'''</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo−C1</td>
<td>2.143</td>
<td>2.147</td>
<td>2.142</td>
<td>2.160</td>
</tr>
<tr>
<td>Mo−C2</td>
<td>2.117</td>
<td>2.121</td>
<td>2.124</td>
<td>2.133</td>
</tr>
<tr>
<td>Mo−H*</td>
<td>2.594</td>
<td>2.597</td>
<td>2.553</td>
<td>2.593</td>
</tr>
<tr>
<td>C1−H*</td>
<td>1.106</td>
<td>1.106</td>
<td>1.107</td>
<td>1.102</td>
</tr>
<tr>
<td>Mo−N</td>
<td>1.773</td>
<td>1.768</td>
<td>1.763</td>
<td>1.780</td>
</tr>
<tr>
<td>N−O</td>
<td>1.240</td>
<td>1.243</td>
<td>1.204</td>
<td>1.193</td>
</tr>
<tr>
<td>C1−Mo−C2</td>
<td>113.8</td>
<td>112.5</td>
<td>114.4</td>
<td>114.9</td>
</tr>
<tr>
<td>Mo−C1−H*</td>
<td>101.1</td>
<td>101.1</td>
<td>98.5</td>
<td>100.2</td>
</tr>
<tr>
<td>Mo−N−O</td>
<td>173.8</td>
<td>173.7</td>
<td>172.4</td>
<td>172.7</td>
</tr>
</tbody>
</table>

Figure 7. DFT optimized geometries of CpMo(NO)(C5H5)(CH3) (G−G') and CpMo(NO)(C5H5)(CH2CMe3) (GG).

structure optimized by the use of the SDD basis set, it is very close to that in G (Table 2).

On the other hand, the structure of the phenyl neopentyl complex GG optimized by the B3LYP/LanL2DZ calculations involves one strongly agostic methylene hydrogen. Indeed, the computed acute Mo−C1−H* angle (88.4°) and the short Mo−H* distance (2.379 Å) indicate that GG is a better model for the actual complex 6, probably for both steric and electronic reasons. For instance, the inductive effect of a Bu group would increase the basicity of the methylene C−H linkages and enhance the interaction between the α-hydrogen and the strongly Lewis-acidic molybdenum center. The present study clearly shows that the use of the simplified model G results in an underestimation of α-agostic interactions which often play very important roles during the cleavage of α-C−H bonds by metal-assisted abstraction pathways.8

Based on these initial findings, we next examined the intermolecular C−H bond activation pathways initiated by the neopentyl phenyl complex 6 by the use of both models, G and GG, to assess what effects the simplification of the alkyl ligands has on these pathways. The LanL2DZ basis set was used during the following calculations in order to minimize computational expense. At this point, it may also be noted that, in general, the HOMOs and LUMOs of the various structures optimized during this work resemble those described by Poli and Smith during their theoretical investigations of related systems.35

B. C−H Activations Initiated by CpMo(NO)(C6H5)(CH3). Optimal geometries have been determined for various species included in the activation processes, and the results of these computations are presented in Figure 8 and Table S1 of the Supporting Information. A π-benzene adduct of the carbene fragment CpMo(NO)(=CH2) has been successfully located as a distinct intermediate (E) for the process involving eventual benzene expulsion.36 Another stable intermediate (E′) with the π-benzene ligand positioned away from the Cp ring has also been found, and its calculated energy is almost the same as that of E. Similar stable intermediates have been found during the theoretical studies of CpW(NO)R2 systems.36 The transition state from the methyl phenyl complex G to E via a one-step, σ-bond metathesis pathway is a late one (F-TS), with the hydrogen atom being transferred being more than halfway to the H-acceptor carbon.

On the other hand, for the pathway involving methane loss from the methyl phenyl reactant, a stable σ-methane benzene intermediate I has been found. The methane ligand is coordinated in an η2 fashion to the metal center with Mo−H and Mo−C bond distances of 2.211 Å and 2.877 Å, respectively. Both distances are slightly longer than those previously computed for the corresponding methane alkylene intermediate, CpMo(NO)(=CH2)(CH3) (C).35 The transition state H-TS from G to I is a very late one in which the formation of the benzene and methane ligands is almost complete. Thus, the distance between the transferring hydrogen, H*, and the methyl acceptor is only 1.389 Å, whereas that between H* and C3 is 1.554 Å. In a related theoretical study of plausible mechanisms for generating tungsten carbene species from Cp′W(NO)(CH3)2 (Cp′ = Cp or Cp*), Fan and Hall37 found the stable intermediates Cp′W(NO)(H)(η2-C6H4)(CH3) that result from α-H oxidative addition. Nevertheless, they concluded that the one-step, σ-bond metathesis-like mechanism is the preferred one. We therefore attempted to locate CpMo(NO)(H)(η2-C6H4)(CH3), a stable intermediate resulting from the oxidative addition of a β-hydrogen of the phenyl ring, during the course of the transformation from G to I. However, such a species was not found at the present calculation level even after extensive searching with various initial reactant geometries. Finally, the transition state L-TS has been located during the course of the reaction from the π-benzene benzene intermediate K to the diphenyl complex M. The molecular structure of L-TS is very similar to that of the benzene intermediate K. Remarkably, the structure of the pyridine adduct of the benzene intermediate, N, optimized by the B3LYP/LanL2DZ calculation is almost the same as the X-ray structure of 9. Thus, the computed C2−C3 bond length of the benzene ligand is 1.364 Å, only slightly longer than the actual value (1.356(6) Å). The other C−C bond distances in
Table 3. Relative Energies of Complexes in the CpMo(NO)(C₆H₅)(CH₃) Model System (see Figure 9).

<table>
<thead>
<tr>
<th>complex</th>
<th>ΔG (kcal mol⁻¹)</th>
<th>ΔΔG (kcal mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>29.53</td>
<td>18.86</td>
</tr>
<tr>
<td>E</td>
<td>16.73</td>
<td>16.18</td>
</tr>
<tr>
<td>E'</td>
<td>16.44</td>
<td>16.82</td>
</tr>
<tr>
<td>F-TS</td>
<td>29.45</td>
<td>31.02</td>
</tr>
<tr>
<td>G</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>H-TS</td>
<td>33.62</td>
<td>34.96</td>
</tr>
<tr>
<td>I</td>
<td>25.11</td>
<td>23.84</td>
</tr>
<tr>
<td>J</td>
<td>27.85</td>
<td>17.50</td>
</tr>
<tr>
<td>K</td>
<td>19.02</td>
<td>19.04</td>
</tr>
<tr>
<td>L-TS</td>
<td>26.52</td>
<td>28.90</td>
</tr>
<tr>
<td>M</td>
<td>−4.18</td>
<td>−3.69</td>
</tr>
<tr>
<td>N</td>
<td>−6.83</td>
<td>−5.54</td>
</tr>
</tbody>
</table>

Table 3. Relative Energies of Complexes in the CpMo(NO)(C₆H₅)(CH₃) Model System (see Figure 9).

Figure 9. Reaction profile showing the calculated energies of complexes derived from CpMo(NO)(C₆H₅)(CH₃) (G) (see Table 3).

the benzyne ligand (1.399–1.420 Å), the two Mo—C(benzyne) distances (2.115 and 2.150 Å), and the coordination geometry of the pyridine ligand (e.g., Mo—N₂ = 2.227 Å) also compare very well with those found in the X-ray structure (Figure 6).

The data summarized in Table 3 and presented pictorially in Figure 9 show the complete energy profile accompanying these C–H activation processes originating at G. The calculated activation barrier for the generation of the active benzyne intermediate from G (33.62 kcal mol⁻¹) is slightly higher than that for the methylene intermediate (29.45 kcal mol⁻¹), and it is consistent with the results obtained in competition experiments (vide supra). The benzyne intermediate stabilized by π-coordinated benzene (K) is 19.02 kcal mol⁻¹ less stable than the reactant G, and the energy of the transition state L-TS is only 7.50 kcal mol⁻¹ higher than that of K. This result indicates that once the reactive benzyne intermediate is formed in benzene solution, the reaction spontaneously proceeds to form the thermodynamically stable diphenyl complex M. Conversely, the diphenyl complex needs to overcome a relatively large barrier (30.70 kcal mol⁻¹) in order to generate an active benzyne intermediate. Finally, the low energy level of the pyridine adduct N (−6.83 kcal mol⁻¹) indicates the high thermal stability of such Lewis-base adducts, a feature discussed previously by other investigators.35

C. C–H Activations Initiated by CpMo(NO)(C₆H₅)(CH₂CMe₃).

All the optimized structures are shown in Figure 10, and their key structural parameters are summarized in Table 4 and Table S2 in the Supporting Information. The relative energies of the various species are collected in Table 5 and are presented pictorially in Figure 11. The Mo—C₁ bond lengths in the optimal structures of DD, EE, and FF-TS are slightly longer (~0.01 Å) than those found in the phenyl methyl system. In FF-TS the Mo—H distance is much shorter (by more than 0.02 Å) than that in F-TS. Remarkably, the employment of a model including a neopentyl group greatly reduces the calculated barrier for the formation of a reactive alkyldiene intermediate. Thus, the relative energy of the transition state FF-TS is 5.58 kcal mol⁻¹ lower than that calculated for the simpler methyl system (F-TS). On the other hand, the presence of a bulky neopentyl ligand does not result in any significant changes of the activation barrier for the formation of the benzyne intermediate. Hence, the relative energy of the transition state HH-TS is 34.70 kcal mol⁻¹, only slightly higher than that of H-TS (33.62 kcal mol⁻¹). As a result, the barrier for the generation of the active benzyne intermediate is 10.83 kcal mol⁻¹ higher than that for the neopentylidene species, again indicating that in the neopentyl phenyl complex α-hydrogen abstraction to form the Mo=CHCMe₃ linkage is more facile than the β-hydrogen elimination to form the benzyne species. It may also be noted that the optimized structure of the pyridine adduct of the alkylidene intermediate OÖ (a known compound)36 compares well with the solid-state molecular structure of the corresponding complex 8 (Figure 4). Thus, the Mo—C₁ bond length (1.951 Å), the Mo—C₁—C(tBu) angle (138.4°), and the coordination geometry of the pyridine ligand (i.e., Mo—N₂ = 2.205 Å) compare very well with those found in the experimentally determined structure. Finally, as for N, the computed energy level of OÖ is relatively low (~13.52 kcal mol⁻¹), again indicating its relatively high thermal stability.

D. C–H Activations Initiated by CpMo(NO)(CH₃CMe₃)₂.

In addition to investigating the parallel generation of the active intermediates from the alkyl phenyl complexes, we have also studied mechanisms for generating molybdenum alkylidene species from CpMo(NO)(CH₂CMe₃)₂ (AA) by neopentane elimination. Apart from the methyl groups on the Cp ring, the structural parameters of AA closely resemble those in the solid-state molecular structure of 1 (Figure 1) except for the geometries of the α-hydrogens. The optimized structure of CpMo(NO)(CH₂CMe₃)₂ involves two “moderately agostic” α-hydrogens (Mo to α-H = 2.484 Å and 2.478 Å). Nevertheless, the extent of α-agostic interaction in AA is significantly larger than those found in previous studies employing model dimethyl complexes.35,37 As summarized in Table 5, the activation energy for the one-step transformation of AA into the stable α-neopentane neopentylidene intermediate CC is calculated to be 27.34 kcal mol⁻¹ (27.58 kcal mol⁻¹ based on ΔE₀ calculated from the sum of electronic and zero-point energies) According to the previous report,35 the computed activation barrier from CpMo(NO)(CH₃)₂ (A) to CpMo(NO)(═CH₂)(α-CH₃) (C) is 32.62 kcal mol⁻¹ based on ΔE₀. A comparison of these data clearly indicates that the use of “unsimplified” models greatly lowers the barrier for the α-hydrogen elimination pathway. Hence, it is worth noting at this point that while the insights provided by computations can be very useful, the results obtained using simplified models such as CpM(NO)(CH₃)₂ in place of the actual and more complicated bis(alkyl) compounds should be interpreted with caution. In fact, in this particular system the dimethyl complexes do not even exhibit α-H elimination chemistry, spontaneously converting instead to their

J. AM. CHEM. SOC. • VOL. 125, NO. 23, 2003 7043
oxo imido isomers, \(\text{Cp'M[NO(CH_3)](O)(CH_3)} \), via nitrosyl \(\text{Ns} \) bond cleavage under the experimental conditions employed. 38 In summary, thermolysis of the neopentyl phenyl complex 6 in hydrocarbon solutions affords products via both the neopen-
tylidene and benzyne intermediates at ambient temperatures. However, the products are formed in different ratios depending on the substrates involved, thereby indicating that the rate of traversal of the two competitive \(\text{C—H} \) bond-activation pathways depends on the nature of the hydrocarbon substrates. The theoretical part of this work clearly indicates the presence of \(\sigma \)- or \(\pi \)-hydrocarbon complexes on the reaction coordinates of the alkylidene and the benzyne intermediates. 13,36 Consistent with the calculations is the observation that trapping of the intermediates with Lewis bases such as pyridine results in more of the trapped neopentylidene complex, since it is more readily formed from 6. However, the neopentylidene intermediate is computed to effect \(\text{C—H} \) bond activations more slowly, and thus, with substrates such as benzene and tetramethylsilane, the products resulting from the benzyne intermediate should pre-
dominate, as is indeed observed experimentally. In other words, the less abundant intermediate is responsible for the majority of the \(\text{C—H} \) activated products. This qualitative agreement of theory and experiment is gratifying, especially since the theoretical calculations were effected on the model \(\text{Cp} \) complexes in the gas phase rather than the actual \(\text{Cp}^* \) complexes in solutions for which solvent effects would also be expected to play a role.

Epilogue

Our initial investigations of the thermal reactivity of 1 and 6 have revealed several unique characteristics of \(\text{C—H} \) bond activation by the reactive molybdenum alkylidene and benzyne complexes, \(\text{Cp'Mo(NO)(CH_3)C_6H_5} \) and \(\text{Cp'Mo(NO)(C_6H_5)} \). First, the activation of \(\text{C—H} \) bonds occurs at room temperature via the 1,2-\(\text{C—H} \) addition of the substrate to the \(\text{Mo=C} \) double bond of \(\text{Cp'Mo(NO)(CH_3)C_6H_5} \) with a slight kinetic preference for the strongest \(\text{C—H} \) bond. Second, parallel modes of \(\text{C—H} \) bond activation can be initiated from 6 by elimination of either alkane or arene, resulting in the simultaneous formation of the \(\text{Cp'Mo(NO)(C_6H_5)} \) and \(\text{Cp'Mo-}
(NO)(\eta^2-C_6H_4) \) intermediates, both of which can activate \(\text{C—H} \) bonds. It is thus not unreasonable to expect that thermally induced \(\alpha \)-H elimination of various hydrocarbons from other mixed-hydrocarbyl congeners of the large family of available

\[
\begin{array}{cccccc}
\text{complex} & \Delta E & \Delta G & \\
\text{AA} & 4.58 & 4.48 & \\
\text{BB-TS} & 31.92 & 33.41 & \\
\text{CC} & 14.79 & 13.39 & \\
\text{DD} & 24.60 & 12.51 & \\
\text{EE} & 12.38 & 11.00 & \\
\text{FF-TS} & 23.87 & 24.44 & \\
\text{GG} & 0.00 & 0.00 & \\
\text{HH-TS} & 34.70 & 36.50 & \\
\text{II} & 22.09 & 19.74 & \\
\text{J} & 29.42 & 17.39 & \\
\text{K} & 20.59 & 18.92 & \\
\text{L-TS} & 28.09 & 28.78 & \\
\text{M} & 20.61 & 3.81 & \\
\text{OO} & 13.52 & 14.18 & \\
\end{array}
\]

Cp*Mo(NO)(R)(R’) complexes will provide a wide variety of coordinatively unsaturated complexes suitable for the activation of hydrocarbons in unprecedented ways. Our studies in this regard with these and related complexes are currently in progress, and the results of these investigations will be reported in due course.

Experimental Section

General Methods. All reactions and subsequent manipulations were performed under rigorously anaerobic and anhydrous conditions utilizing either high vacuum or an atmosphere of prepurified argon or dinitrogen with conventional gloveboxes and vacuum-line Schlenk techniques. The gloveboxes used were Innovative Technologies Laboratory 100 and MS-130 BG dual-station models equipped with freezers maintained at −30 °C. Thermolysis reactions were performed in thick-walled glass bombs equipped with Kontes greaseless stopcocks, and NMR spectroscopic analyses were conducted in J. Young NMR tubes.

All solvents were dried and distilled prior to use or vacuum transferred directly from the appropriate drying agent. Hydrocarbons were distilled from calcium hydride and stored over potassium. Pyridine (toluene- d 8), or activated 4 Å molecular sieves (CD 2 Cl 2). Trimethylphosphine (Aldrich) was dried and stored over potassium. Pyridine (0.030 g, 27%).

Preparation of Cp*Mo(NO)(CH 2 CMe 3)(C 6 H 5) (1). A red solution of 1 (0.096 g, 0.24 mmol) in Me 4 Si (8 mL) was stirred at room temperature for 30 h. The solution was then evaporated to dryness in vacuo, and the red solid was extracted with hexanes (5 mL). The extract was filtered through a column of neutral alumina (3 × 1 cm) supported on Kratos MS-50 spectrometer. Elemental analyses were performed by Canadian Microanalytical Service Ltd., Delta, B.C., Canada.

Preparation of Cp*Mo(NO)(CH 2 CMe 3)(CH 3 SiMe 3) (2). A red solution of 1 (0.100 g, 0.249 mmol) in mesitylene (10 mL) was stirred at room temperature for 30 h. The final solution was taken to dryness in vacuo, and the solid orange residue was extracted with 10:1 hexanes/ Et 2 O (3 × 10 mL). The combined extracts were filtered through a column of neutral alumina (0.5 × 5 cm), and the filtrate was stored at −50 °C overnight to induce the deposition of 2 as a red crystalline mass (0.032 g, 32%). The IR, NMR, and mass spectral data of these crystals were identical to those reported previously for 2.

Preparation of Cp*Mo(NO)(CH 2 CMe 3)(C 6 H 3 -3,5-CH 2 -CH 3) (3). A red solution of 1 (0.100 g, 0.249 mmol) in mesitylene (10 mL) was stirred at room temperature for 30 h. The final solution was taken to dryness in vacuo, and the solid orange residue was extracted with 10:1 hexanes/ Et 2 O (3 × 10 mL). The combined extracts were filtered through a column of neutral alumina (0.5 × 5 cm), and the filtrate was stored at −50 °C overnight to induce the deposition of 3 as yellow needles (0.030 g, 27%).

Preparation of Cp*Mo(NO)(CH 2 CMe 3)(C 6 H 3 -3,5-CH 2 -CH 3) (3). A red solution of 1 (0.100 g, 0.249 mmol) in mesitylene (10 mL) was stirred at room temperature for 30 h. The final solution was taken to dryness in vacuo, and the solid orange residue was extracted with 10:1 hexanes/ Et 2 O (3 × 10 mL). The combined extracts were filtered through a column of neutral alumina (0.5 × 5 cm), and the filtrate was stored at −30 °C overnight to induce the deposition of 3 as yellow needles (0.030 g, 27%).

Preparation of Cp*Mo(NO)(CH 2 CMe 3)(C 6 H 3 -3,5-CH 2 -CH 3) (3). A red solution of 1 (0.100 g, 0.249 mmol) in mesitylene (10 mL) was stirred at room temperature for 30 h. The final solution was taken to dryness in vacuo, and the solid orange residue was extracted with 10:1 hexanes/ Et 2 O (3 × 10 mL). The combined extracts were filtered through a column of neutral alumina (0.5 × 5 cm), and the filtrate was stored at −30 °C overnight to induce the deposition of 3 as yellow needles (0.030 g, 27%).

Preparation of Cp*Mo(NO)(CH 2 CMe 3)(C 6 H 3 -3,5-CH 2 -CH 3) (3). A red solution of 1 (0.100 g, 0.249 mmol) in mesitylene (10 mL) was stirred at room temperature for 30 h. The final solution was taken to dryness in vacuo, and the solid orange residue was extracted with 10:1 hexanes/ Et 2 O (3 × 10 mL). The combined extracts were filtered through a column of neutral alumina (0.5 × 5 cm), and the filtrate was stored at −30 °C overnight to induce the deposition of 3 as yellow needles (0.030 g, 27%).

Preparation of Cp*Mo(NO)(CH 2 CMe 3)(C 6 H 3 -3,5-CH 2 -CH 3) (3). A red solution of 1 (0.100 g, 0.249 mmol) in mesitylene (10 mL) was stirred at room temperature for 30 h. The final solution was taken to dryness in vacuo, and the solid orange residue was extracted with 10:1 hexanes/ Et 2 O (3 × 10 mL). The combined extracts were filtered through a column of neutral alumina (0.5 × 5 cm), and the filtrate was stored at −30 °C overnight to induce the deposition of 3 as yellow needles (0.030 g, 27%).
Vacuo, the dark red residue was extracted with hexanes (2 × 5 mL), and the extracts were filtered through a column of neutral alumina (0.5 × 5 cm) supported on glass wool. The filtrate was stored at −30 °C overnight to induce the deposition of red blocks of 6-d5 (0.064 g, 62%).

Preparation of Cp*Mo(NO)(CH2CMe3)(C6H5)(6-d5). A red solution of 1 (0.100 g, 0.251 mmol) in C6D6 (8 mL) was stirred at room temperature for 16 h. The final solution was taken to dryness in vacuo, the residual red precipitate was dissolved in C6D6 for analysis by 1H NMR.

Thermal Reaction of 1 in p-Xylene. A red solution of 1 (0.101 g, 0.251 mmol) in p-xylene (10 mL) was stirred at room temperature for 44 h. The final red solution was then taken to dryness in vacuo, and the solid residue was dissolved in C6D6 for analysis by 1H NMR spectroscopy. This analysis indicated the presence of Cp*Mo(NO)(CH2CMe3)(C6H5)(4), 73% and Cp*Mo(NO)(CH2CMe3)(C6D6)(4), 79%.

Characterization data for 5: 1H NMR (C6D6, 300 MHz, 25 °C) δ 0.19 (s, 9H, CMe3), 1.24 (s, 9H, CMe3), 1.51 (s, 15H, C5Me5), 1.69 (br d, 3JHH = 7.9 Hz, 2H, phenyl H), 6.49 (d, 3JHH = 7.9 Hz, 2H, phenyl H). These data are consistent with those previously reported for this complex in CDC13.12b

Thermal Reaction of 1 in Benzene. A red solution of 1 (0.205 g, 0.509 mmol) in C6H6 (10 mL) was stirred at room temperature for 30 h. The final red-purple solution was then taken to dryness in vacuo, the precipitate was dissolved in C6D6 for analysis by 1H NMR.

Preparation of Cp*Mo(NO)(CH2CMe3)(C6H5)(6-d5). A red solution of 6 (0.056 g, 0.136 mmol) in pyridine (5 mL) was stirred at room temperature for 24 h. The final solution was then taken to dryness in vacuo, the remaining orange solid was dissolved in pyridine (10 mL), and the solution was filtered through a column of Celite (0.5 × 2 cm) supported on glass wool. The filtrate was kept at −30 °C overnight to induce the deposition of orange crystals which were collected by filtration, washed with pentane (2 × 1 mL), and dried in vacuo (0.058 g, 55% in two crops).

Preparation of Cp*Mo(NO)(CH2CMe3)(C6H5)(6-d5). A red solution of 6 (0.056 g, 0.136 mmol) in pyridine (5 mL) was stirred at room temperature for 24 h. The final solution was then taken to dryness in vacuo, the remaining orange solid was dissolved in Et2O (10 mL), and the solution was filtered through a column of Celite (0.5 × 2 cm) supported on glass wool. The filtrate was stored at −30 °C for 4 h to induce the deposition of 9 as a yellow solid. The product was isolated by decanting the orange supernatant solution (from which complex 8 was recovered), and the yellow precipitate was washed with cold Et2O (2 × 1 mL) and pentane (2 × 1 mL) and then dried in vacuo (0.010 g, 17%).

Recrystallization of the yellow solid from benzene provided yellow needles of 9-C6H5 suitable for analysis by X-ray diffraction. The benzyne complexes Cp*Mo(NO)(η5-C5H4)(NC6H5) (9) and Cp*Mo(NO)(η5-C5H4)(NC6H4)(9-d5) are not sufficiently soluble in C6D6 to characterize by 1H NMR spectroscopy. Consequently their diagnostic NMR spectra were obtained with pyridine-d5 solutions.

Preparation of Cp*Mo(NO)(η5-C5H4)(NC6H5)(6-d5). A red solution of 6 (0.056 g, 0.136 mmol) in pyridine (5 mL) was stirred at room temperature for 24 h. The final solution was then taken to dryness in vacuo, the remaining orange solid was dissolved in Et2O (10 mL), and the solution was filtered through a column of Celite (0.5 × 2 cm) supported on glass wool. The filtrate was stored at −30 °C for 4 h to induce the deposition of 9 as a yellow solid. The product was isolated by decanting the orange supernatant solution (from which complex 8 was recovered), and the yellow precipitate was washed with cold Et2O (2 × 1 mL) and pentane (2 × 1 mL) and then dried in vacuo (0.010 g, 17%).

Recrystallization of the yellow solid from benzene provided yellow needles of 9-C6H5 suitable for analysis by X-ray diffraction. The benzyne complexes Cp*Mo(NO)(η5-C5H4)(NC6H5) (9) and Cp*Mo(NO)(η5-C5H4)(NC6H4)(9-d5) are not sufficiently soluble in C6D6 to characterize by 1H NMR spectroscopy. Consequently their diagnostic NMR spectra were obtained with pyridine-d5 solutions.
(pyridine C\textsubscript{eq}), 127.6 (benzene C\textsubscript{an}), 128.8 (benzene C\textsubscript{an}), 129.1 (benzene C\textsubscript{eq}), 129.5 (benzene C\textsubscript{eq}), 138.6 (pyridine C\textsubscript{eq}), 156.3 (pyridine C\textsubscript{eq}), 158.4 (benzene C\textsubscript{an}), 162.2 (benzene C\textsubscript{an}), MS (EI, 120 °C): m/z 418 [19P]. The spectra of 9-d\textsubscript{5} in pyridine-d\textsubscript{5} (e.g., Figure 6) are identical except that no pyridine signals are evident.

Thermal Reaction of 6-d\textsubscript{5} in C\textsubscript{6}D\textsubscript{6}. A glass bomb equipped with a Kontes valve was charged with a solution of 6-d\textsubscript{5} (0.012 g, 0.029 mmol) in C\textsubscript{6}D\textsubscript{6} (4 mL) and maintained at 35 °C for 48 h. A 1H NMR spectrum of the final solution indicated the incomplete formation of 7-d\textsubscript{5} (δ 1.51) and neopentane-d\textsubscript{5} (δ 0.86). The proton-decoupled deuterium spectrum of the final solution was also recorded. 1H NMR (C\textsubscript{6}D\textsubscript{6}, 76.8 MHz, 25 °C) δ -1.75 (s, CD\textsubscript{3}H of unreacted 6-d\textsubscript{5}), 0.86 (s, neopentane-d\textsubscript{5}), 7.15 (C\textsubscript{6}D\textsubscript{6}), 7.57 (s, phenyl), 7.70 (s, phenyl). No deuterium signal was evident in the C13NMR methyl region (ca. δ 1.5).

Thermal Reaction of 6 in Tetramethylsilane. Thermalism of 6 (0.008 g, 0.020 mmol) in Me\textsubscript{4}Si (5 mL) at room temperature for 48 h results in the formation of a violet solution. Evaporation of the volatile components from the final reaction mixture provided a deep red solid that was isolated in C\textsubscript{6}D\textsubscript{6}. Analysis of this solution by NMR spectroscopy revealed a mixture of CpMo(NO)(CH\textsubscript{2}C\textsubscript{Me}\textsubscript{3})(CH\textsubscript{2}SiMe\textsubscript{3}) (2, 41%) and CpMo(NO)(CH\textsubscript{2}SiMe\textsubscript{3})(CH\textsubscript{3}) (10, 59%) (product ratio 3:1). Resolution of the spots (from 60 collected frames) using the SMART software enabled the formation of a brown solution containing Cp*Mo(NO)(CH\textsubscript{2}C\textsubscript{Me}\textsubscript{3})(CH\textsubscript{2}SiMe\textsubscript{3}) and Cp*Mo(NO)(CH\textsubscript{2}SiMe\textsubscript{3})(C\textsubscript{6}H\textsubscript{5}) (41%) and Cp*Mo(NO)(CH\textsubscript{2}SiMe\textsubscript{3})(C\textsubscript{6}H\textsubscript{5}) (9-C\textsubscript{6}H\textsubscript{4}) were conducted at the University of British Columbia. All measurements were recorded at 100(1) °C on a Rigaku/ADSC CCD area detector using graphite-monochromated Mo Kα radiation. For 3, the data were collected to a maximum 2θ value of 55.8° in 0.5° oscillations with 12.0 s exposures. A sweep of data was done using ω oscillations from 0.0 to 190.0° at χ = -90.0°, and a second sweep was performed using ω oscillations between 17.0° and 23.0° at χ = -90°. The crystal-to-detector distance was 38.14 mm, and the detector swing angle was -5.58°. For 6, the data were collected to a maximum 2θ value of 55.8° in 0.5° oscillations with 20.0 s exposures. A sweep of data was done using ω Oscillations from 0.0 to 190.0° at χ = -90°, and a second sweep was performed using ω oscillations between 17.0° and 23.0° at χ = -90°. The crystal-to-detector distance was 38.14 mm, and the detector swing angle was -5.60°. For 9-C\textsubscript{6}H\textsubscript{4}, the data were collected to a maximum 2θ value of 55.7° in 0.5° oscillations with 57.0 s exposures. A sweep of data was done using ω Oscillations from 0.0° to 190.0° at χ = -90.0°, and a second sweep was performed using ω oscillations between 17.0° and 23.0° at χ = -90°. The crystal-to-detector distance was 37.99 mm, and the detector swing angle was -5.60°. All three data sets were corrected for Lorentz and polarization effects. The single-crystal structures were solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. For 3, only the methylene hydrogens on C(11) and C(20) were refined isotropically. For 6, the phenyl hydrogens and the methylene hydrogens on C(17) were refined isotropically. All other hydrogen atoms in 3, 6, and 9-C\textsubscript{6}H\textsubscript{4} were placed in calculated positions. The final cycles of full-matrix least-squares refinements (function minimized, 2nwF2-F22) were based on 5082 observed reflections and 270 variable parameters for 3, 4610 observed reflections and 253 variable parameters for 6, and 5081 observed reflections and 285 variable parameters for 9-C\textsubscript{6}H\textsubscript{4}. All calculations were performed using the teXsan crystallographic software package of Molecular Structure Corporation and SHELXL-97. Selected crystallographic data for the X-ray structures of 1, 3, 6, 8, and 9-C\textsubscript{6}H\textsubscript{4} are presented in Table 1. Full details of all crystallographic analyses are provided as Supporting Information.

Kinetic Studies. Kinetic studies of the reaction of 1 in C\textsubscript{6}D\textsubscript{6} were performed using a J. Young NMR tube containing a solution of 1 (12 mg, 0.03 mmol) in 1 mL of C\textsubscript{6}D\textsubscript{6} with a fused capillary tube containing hexamethyldisilane as an internal standard. The reaction was conducted in the NMR probe at constant temperature, and 1H NMR spectra were recorded at intervals. The rate constants were calculated using linear regression methods from first-order plots of the loss of starting material versus time.

In this connection, it should be noted that the alkylidene fragment \(\text{CpMo(NO)}(\text{CH}_2)_2 \) was replaced by a \(\text{CH}_2 \) split of the optimized \(\text{sp} \) function. In the fourth basis set, LanL2DZ-III, the modified ECP in which the two outermost \(p \) functions were replaced by a \(\text{41} \) split of the optimized \(\text{5p} \) function was employed for the Mo atoms together with the 6-31G* basis set for all C, N, and O atoms, the 6-31G** basis set for all H atoms on \(\text{CH}_3 \) and \(\text{C}_6\text{H}_5 \) groups, and the 6-31G basis set for all cyclopentadienyl H atoms. No constraints were imposed on any of the systems. Frequency calculations on optimized species established that all the transition states possessed only one imaginary frequency and that the products and intermediates possessed no imaginary frequencies. Energies with thermal corrections (\(E \)) and Gibbs free energies (\(G \)) were computed for species in the gas phase at standard temperature (298.15 K) and pressure (1 atm). Spatial plots of the optimized geometries and frontier orbitals were obtained from Gaussian 98 output using Cambridge Soft Corporation’s Chem 3D Pro v4.0.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada for support of this work in the form of grants to P.L. We also thank Professor W. Stephen McNeil for his advice and assistance with the DFT calculations and Professor Take-aki Mitsudo for enabling our use of the supercomputer at Kyoto University. P.L. is a Canada Killam Research Fellow.

Supporting Information Available: Full details of crystallographic (CIF) and theoretical (PDF) analyses. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0349094

